Irregularity of the Bergman Projection on Smooth Unbounded Worm Domains

نویسندگان

چکیده

Abstract In this work, we consider smooth unbounded worm domains $${\mathcal {Z}}_\lambda $$ Z λ in $${\mathbb {C}}^2$$ C 2 and show that the Bergman projection, densely defined on Sobolev spaces $$H^{s,p}({\mathcal ),$$ H s , p ( ) $$p\in (1,\infty ∈ 1 ∞ $$s\ge 0,$$ ≥ 0 does not extend to a bounded operator $$P_\lambda :H^{s,p}({\mathcal )\rightarrow H^{s,p}({\mathcal )$$ P : → when $$s>0$$ > or $$p\ne 2.$$ ≠ . The same irregularity was known case of non-smooth worm. This improved result shows projection is consequence boundary but instead infinite windings domain.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irregularity of the Bergman Projection on Worm Domains in C

We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.

متن کامل

The Bergman Kernel and Projection on Non-smooth Worm Domains

We study the Bergman kernel and projection on the worm domains Dβ = { ζ ∈ C : Re ( ζ1e −i log |ζ2| 2) > 0, ∣∣ log |ζ2| ∣∣ < β − π 2 } and D β = { z ∈ C : ∣Im z1 − log |z2| ∣∣ < π 2 , | log |z2| | < β − π 2 } for β > π. These two domains are biholomorphically equivalent via the mapping D β ∋ (z1, z2) 7→ (e z1 , z2) ∋ Dβ . We calculate the kernels explicitly, up to an error term that can be contr...

متن کامل

IRREGULARITY OF THE BERGMAN PROJECTION ON WORM DOMAINS IN C n

We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.

متن کامل

Global C∞ Irregularity of the ∂̄–neumann Problem for Worm Domains

where ρ is a defining function for Ω, = ∂̄∂̄∗ + ∂̄∗∂̄, u, f are (0, 1) forms, and denotes the interior product of forms. Under the stated hypotheses on Ω, this problem is uniquely solvable for every f ∈ L(Ω). The Neumann operator N , mapping f to the solution u, is continuous on L(Ω). The Bergman projection B is the orthogonal projection of L(Ω) onto the closed subspace of L holomorphic functions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2023

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-023-02331-3