Irregularity of the Bergman Projection on Smooth Unbounded Worm Domains
نویسندگان
چکیده
Abstract In this work, we consider smooth unbounded worm domains $${\mathcal {Z}}_\lambda $$ Z λ in $${\mathbb {C}}^2$$ C 2 and show that the Bergman projection, densely defined on Sobolev spaces $$H^{s,p}({\mathcal ),$$ H s , p ( ) $$p\in (1,\infty ∈ 1 ∞ $$s\ge 0,$$ ≥ 0 does not extend to a bounded operator $$P_\lambda :H^{s,p}({\mathcal )\rightarrow H^{s,p}({\mathcal )$$ P : → when $$s>0$$ > or $$p\ne 2.$$ ≠ . The same irregularity was known case of non-smooth worm. This improved result shows projection is consequence boundary but instead infinite windings domain.
منابع مشابه
Irregularity of the Bergman Projection on Worm Domains in C
We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.
متن کاملThe Bergman Kernel and Projection on Non-smooth Worm Domains
We study the Bergman kernel and projection on the worm domains Dβ = { ζ ∈ C : Re ( ζ1e −i log |ζ2| 2) > 0, ∣∣ log |ζ2| ∣∣ < β − π 2 } and D β = { z ∈ C : ∣Im z1 − log |z2| ∣∣ < π 2 , | log |z2| | < β − π 2 } for β > π. These two domains are biholomorphically equivalent via the mapping D β ∋ (z1, z2) 7→ (e z1 , z2) ∋ Dβ . We calculate the kernels explicitly, up to an error term that can be contr...
متن کاملIRREGULARITY OF THE BERGMAN PROJECTION ON WORM DOMAINS IN C n
We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.
متن کاملGlobal C∞ Irregularity of the ∂̄–neumann Problem for Worm Domains
where ρ is a defining function for Ω, = ∂̄∂̄∗ + ∂̄∗∂̄, u, f are (0, 1) forms, and denotes the interior product of forms. Under the stated hypotheses on Ω, this problem is uniquely solvable for every f ∈ L(Ω). The Neumann operator N , mapping f to the solution u, is continuous on L(Ω). The Bergman projection B is the orthogonal projection of L(Ω) onto the closed subspace of L holomorphic functions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2023
ISSN: ['1660-5454', '1660-5446']
DOI: https://doi.org/10.1007/s00009-023-02331-3